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LETTER TO THE EDITOR

A nonunitary version of massless quantum electrodynamics
possessing a critical point
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‡ Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA

Received 7 August 1998, in final form 30 November 1998

Abstract. Recently, it has been observed that a quantum field theory need not be hermitian to have
a real, positive spectrum. What seems to be required is symmetry under combined parity and time-
reversal transformations. This idea is extended to massless electrodynamics, in which the photon
couples to the axial-vector current with an imaginary coupling constant. The eigenvalue condition
necessary for the finiteness of the theory can now be solved; the value for the charge appears to
be stable order-by-order. Similarly, the semiclassical Casimir model for the fine-structure constant
yields a positive value.

Recently, there have been investigations of quantum theories whose Hamiltonians are
nonhermitian. It has been found that the energy spectra are real and positive when these
theories respectPT invariance, whereP andT represent parity and time reversal. A class of
quantum-mechanical theories having this property is defined by the Hamiltonian [1]

H = p2 − (ix)N (N real). (1)

For allN > 2 the spectrum ofH is discrete, real, and positive¶. Note that this theory does
not respect parity invariance; thus for allN (includingN = 4) the expectation value ofx is
nonvanishing [1]. This surprising result is a consequence of the boundary conditions+.

Quantum field theories having this property have also been studied. A generalization of
equation (1) to scalar quantum field theory is described by the Lagrangian

L = 1
2(∂φ)

2 + 1
2m

2φ2 − g(iφ)N (N > 2). (2)

This theory is not symmetric underP or T separately, but it is invariant under the product
PT . The Hamiltonian for this theory is not hermitian and thus the theory is not unitary in
the conventional sense. However, there is strong evidence that the energy spectrum is real
and bounded below [4]. One can heuristically understand positivity in the context of the
weak-coupling expansion for the caseN = 3. The Lagrangian for this theory is

L = 1
2(∂φ)

2 + 1
2m

2φ2 + giφ3. (3)

In a conventionalgφ3 theory the weak-coupling expansion is real, and (apart from a possible
overall factor ofg) the Green functions are formal power series ing2. These series are not

§ E-mail address:cmb@howdy.wustl.edu
‖ E-mail address:milton@mail.nhn.ou.edu
¶ WhenN < 2 some eigenvalues are real and others are complex becausePT symmetry is spontaneously broken.
See [2].
+ For a discussion of the effect of boundary conditions see [3].
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Borel summable because they do not alternate in sign. Nonsummability reflects the fact that
the spectrum of the underlying theory is not bounded below. However, when we replaceg by
ig, the perturbation series remains real but now alternates in sign. The perturbation series is
now summable and this suggests that the underlying theory has a real positive spectrum.

We emphasize that replacingg by ig in aφ3 field theory org by−g in aφ4 field theory
gives a nonhermitian Hamiltonian. However, thePT invariance of the resulting theory is
crucial and appears to guarantee that the energy spectrum is positive.

The purpose of this letter is extend these notions to quantum electrodynamics†. In
particular, we wish to discuss the case of massless quantum electrodynamics and to re-examine
the program of Johnsonet al[6]. In brief, the objective of their program is to find a critical value
of the coupling constante in the Lagrangian describing massless quantum electrodynamics

L = −1

4
FµνFµν − ψ̄γ µ 1

i
∂µψ + eψ̄γ µAµψ. (4)

The coupling constante is determined by the condition that the theory be entirely finite. The
mass shift in this theory is finite because the unrenormalized masses are zero. Thus, the only
possible infinite quantities are associated with the three renormalization constantsZ1,Z2, and
Z3. However, to any order in powers ofe, it is possible to find a gauge in whichZ1 = Z2

is finite. Thus, the only remaining divergent quantity is 1/Z3. Demanding that this be finite
translates into an eigenvalue condition on the fine structure constant

α = e2

4π
. (5)

This eigenvalue condition takes the form

F1(α) = 0. (6)

The functionF1(α) has been calculated to three loops (four terms) in weak-coupling
perturbation theory:

F1(α) = 4

3

( α
4π

)
+ 4

( α
4π

)2
− 2

( α
4π

)3
− 46

( α
4π

)4
+ · · · . (7)

The first two terms in this series were calculated by Jost and Luttinger [7]. Unfortunately,
with just two terms the only nontrivial solution of equation (6) is negative, which gives an
unphysical imaginary value fore. In a dramatic development, Rosner [8] calculated the third
term in the series. The negative sign of his result is significant because now there is a positive
root to the cubic polynomial equation obtained by truncatingF1(α) after three terms:

α = 13.872. (8)

Rosner’s two-loop result is surprising because it is rational. His work suggests the
conjecture that all of the coefficients in the expansion ofF1(α) might be rational, possibly
reflecting a deep symmetry of the underlying massless theory [9]. This conjecture has recently
gained support through the stunning calculation of the three-loop coefficient by Gorishny and
coworkers [10–12]. The fourth-degree equation gives one positive nontrivial root forα:

α = 3.969. (9)

This value differs from the result in equation (8) by a factor of 3.5, which suggests that this
nontrivial root is unstable.

One might wonder if a stable positive root can be found by first converting the expansion
of F1(α) to Pad́e form. The(1, 1) Pad́e of the Rosner result gives no positive root at all. The

† This idea has been extended to quasi-exactly solvable potentials in quantum mechanics in Bender and Boettcher
[5]. It has been extended to supersymmetric quantum field theory in Bender and Milton [5].
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(1, 2)Pad́e of the four-term series gives one positive root,α = 0.814, and the(2, 1)Pad́e gives
α = 0.545. There seems to be no sensible pattern to these numerical results.

The results regardingPT -symmetric nonhermitian quantum field theories are intriguing
because they suggest that it is possible to formulate a new kind of electrodynamics. Instead of
coupling theA field to a vector current, why not couple this field to an axial-vector current?
Of course, this coupling breaks parity symmetry. Therefore, we also replacee by ie, thereby
breaking time-reversal invariance as well! The resultingPT -symmetric, massless Lagrangian
is

L = −1

4
FµνFµν − 1

2
ψγ 0γ µ

1

i
∂µψ + e

1

2
ψγ 0γ 5γ µAµψ. (10)

We conjecture on the basis of our experience with scalar theories that the spectrum of this
theory is physically acceptable in that it is bounded below.

Our conventions in equation (10) are as follows:γ 0 is antisymmetric and pure imaginary,
γ 0γ µ is symmetric and real,γ 5 = γ 0γ 1γ 2γ 3 is antisymmetric and real, and(γ 5)2 = −1. The
fermion fieldψ is expected to be complex, as are the operatorsx andp in equation (1) andφ
in equations (2) and (3).

Like the conventional electrodynamics described by the Lagrangian (4),L in (10) possesses
gauge invariance;L is invariant under the replacements

Aµ→ Aµ + ∂µ3 ψ → e−ieγ 53ψ. (11)

Note that this gauge transformation on the fermion field is not a phase transformation whene

is real; rather it changes the scale ofψ . However, the bilinear forms in the fermion field in the
Lagrangian and in the energy-momentum tensor are all invariant.

Apart from a possible overall factor ofeγ 5 in some of the Green functions, the Feynman
rules for the Lagrangian (10) give precisely the same weak-coupling expansion as in the
conventional massless quantum electrodynamics (4), except thatα is now replaced by−α.
Thus, in this new and peculiar theory of quantum electrodynamics, the expansion ofF1(α)

becomes

F1(α) = −4

3

( α
4π

)
+ 4

( α
4π

)2
+ 2

( α
4π

)
3− 46

( α
4π

)4
+ · · · . (12)

Now, we find that thereis a nontrivial positive valueα2 satisfying the condition (6) when only
the first two terms are retained:

α2 = 4.189. (13)

If the first three terms are retained, the (unique) positive root is

α3 = 3.657 (14)

which differs fromα2 by 12%. We feel that sinceα2 is determined in effect from a(2, 0) Pad́e
it is more reasonable to convert the three-term series to a(2, 1) Pad́e and then to find the root.
The slightly different result is now

α3 = 3.590. (15)

The natural continuation of this process is to calculate the(3, 1) Pad́e of the four-term series.
The result is

α4 = 4.110. (16)

(This is the only Pad́e that gives a stable positive root.)
Note that the sequence of rootsα2, α3, α4 is remarkably stable. It would be extremely

interesting to calculate the roots of the(3, 2), (4, 2), (4, 3), . . . , Pad́es.
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We conclude this letter with a related observation. Recall that Casimir proposed a model
for determining the charge of the electron. In this model the Coulomb repulsion of a compact
charge distribution is balanced by an attractive zero-point energy [13]. Unfortunately, although
the Casimir force for parallel plates is attractive, in a landmark paper Boyer showed that
it is repulsive for a perfectly conducting spherical shell [14, 15], and thus no balance of
forces is possible. However, withPT -symmetric quantum electrodynamics such a balance is
achievable.

In the absence of radiative corrections, the Casimir or zero-point energy of a perfectly
conducting spherical shell of radiusa is

ECasimir= 0.092 35

2a
h̄c. (17)

This energy results from fluctuations of the electromagnetic field inside and outside the shell.
This result will be unchanged in the new theory if the boundary conditions are unaltered because
the energy is independent of the coupling to the fermion. But now, rather than a Coulomb
repulsion, we have an attraction because in effecte→ ie. If a chargee is uniformly distributed
over a spherical shell of radiusa, that attractive energy is

ECoulomb= − 1

8π

e2

a
. (18)

Thus, stability is achieved if the two energies cancel:

ECasimir +ECoulomb= 0. (19)

This implies a real, positive value for the fine structure constant:

α = e2

4πh̄c
= 0.092 35. (20)

This is an order of magnitude larger than the physical value1
137, and 40 times smaller than the

value found above for a finite quantum electrodynamics. But what is significant here is that a
positive solution forα actually exists.

We thank A Kataev and D Broadhurst for helpful communications and we are grateful to the
US Department of Energy for financial support.

Appendix. Relation to Dyson’s argument

Dyson’s argument [16], made more precise in a series of papers by Itzyksonet al and
Bogomolny et al [17], seems to preclude the existence of a QED-like field theory for
e2 < 0. Dyson’s arguments suggest that the perturbation series for quantum electrodynamics
is probably divergent. This paper does not disagree with this conclusion. However, this
conclusion is not relevant to the conjectures made in this paper, which we regard as plausible.

We emphasize that Dyson’s argument is somewhat fuzzy. If we apply it to the anharmonic
oscillator defined by the HamiltonianH = p2 + x2 + gx4, it goes as follows: forg > 0 there
exists a vacuum state because the potential is bounded below. Now, replaceg by −g. The
potential in the resulting theory is unbounded below, so the vacuum is unstable in this new
theory. Hence, the pointg = 0 in the complex-g plane is a singularity of the ground state
energyE(g). We conclude that the perturbation series forE(g), a series in powers ofg, is
divergent.

While this conclusion is correct, the Dyson argument leading to this conclusion is wrong!
This is because it is not at all clear what is meant by replacingg by −g. One can obtain
many totally different theories depending onhow one replacesg by −g. For example,
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rotating g clockwise aboutg = 0 by 180◦ gives a complex value forE(g). Rotating in
the anticlockwise direction gives adifferent value forE(g) (the complex conjugate value)
even though the same Hamiltonian results. Most importantly: analytically continuing the
HamiltonianH = p2 + x2 + gx2(ix)a from a = 0 to a = 2 through positive values of the
parametera gives a value for the ground state energy that isreal andpositive. Indeed, the
entire spectrum for the resulting HamiltonianH = p2 + x2 − gx4(g > 0) is discrete, real,
andpositive. (It is discrete, real, and positive for alla > 0.) This is the point of our work.
See [1]. The idea of that work, and of the earlier [3], is that simply replacing the coupling
constant by its negative (as in Dyson’s argument) is ambiguous because it ignores the effect
on the boundary conditions. A theory is not defined only by its Hamiltonian.

Here are some further examples. Consider the harmonic oscillator HamiltonianH =
p2+g2x2. Replaceg by−g. Although the Hamiltonian remainsinvariantunder such a rotation,
the spectrum changes sign! Also, consider the HamiltonianH = p2 + g2x6 − 3gx2(g > 0).
The ground state energy for this theory is exactly identicallyE(g) = 0. Now replaceg by
−g. The resulting Hamiltonian has a ground state that is strictly positive. Yet the analytic
continuation ofE = 0 isE = 0! The resolution of this paradox as explained in [3] is that
merely replacingg by−g following Dyson’s argument is ambiguous. The boundary conditions
must be analytically continued ing as well.

We are not sure that Dyson’s large-order analysis of QED says anything about whether
renormalized four-dimensional massless QED defined in the sense of [1] is stable or unstable.
We do believe that such a theory is associated with the Feynman rules withe replaced by ie
and that such a series is likely to be divergent. That is why the arguments given in the first part
of our paper are heuristic and at most suggestive. However, these arguments are supported by
our Casimir force calculation in the second part of our paper. We believe that our conclusions,
while conjectural in nature, may well be valid.
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